Research

develop methods and conduct large simulations to understand what gravitationalSummary:
waves emitted by compact object (black hole and neutron star) mergers can For my research I develop methods and conduct large simulations to understand what gravitational waves emitted by compact object (black hole and neutron star) mergers can teach us about the formation, lives, and explosive deaths of massive stars throughout cosmic history My interdisciplinary work combines the fields of statistics, data science, and astrophysics to quantify uncertain physics in these large computational simulations, and tackles the key bottleneck in gravitational-wave astrophysics: the “Uncertainty Challenge” with the ultimate goal to learn about fundamental physical processes in our Universe in the new Big Data gravitational wave era.
us about the formation, lives, and explosive deaths of massive stars throughout
cosmic history My interdisciplinary work combines the fields of statistics, data
science, and astrophysics to quantify uncertain physics in these large computa-
tional simulations, and tackles the key bottleneck in gravitational-wave astrophysics:
the “Uncertainty Challenge” with the ultimate goal to learn about fundamental
physical processes in our Universe in the new Big Data gravitational wave era.

ADS entries for all papers can be found here.

 

 First or co-lead author (7) :
 
21. Broekgaarden, F.S., Stevenson, S, Thrane, E., 2022 Signatures of Mass Ratio Reversals in gravitational waves from binary black hole mergers, ApJ (in press)
 
20. Broekgaarden, F.S., Berger, E., Stevenson, S., Justham, S. , Mandel, I, Chruslinska, M., van Son, L. A. C., Wagg, T., Vigna-Gomez, A., de Mink, S.E., Chattopadhyay, D., Neijssel, C.J., 2022, Impact of Massive Binary Star and Cosmic Evolution on Gravitational Wave Observations II: Double Compact Object Mergers, MNRAS, 516, 4
 
19.  Mandel, I., Broekgaarden, F.S., 2022, Rates of Compact Object Coalescences, invited review for Living Rev Relativ, 25, 1 
 
18. COMPAS collaboration et al. (incl Broekgaarden, F.S. as one of four lead authors), 2022, Rapid stellar and binary population synthesis with COMPAS, ApJS, 2 258, 2. .
 
17. Broekgaarden, F.S., Berger, E., 2021, Formation of the First Two Black Hole –Neutron Star Mergers (GW200115 and GW200105) from Isolated Binary Evolution, ApJ Letters, 920, L13
 
16. Broekgaarden, F.S., Berger, E., Neijssel, C.J., Vigna-Gomez, A., Chattopadhyay, D., Stevenson, S., Chruslinska, M., Justham, S. , de Mink, S.E., Mandel, I., 2021, Impact of Massive Binary Star and Cosmic Evolution on Gravitational Wave Observations I: Black Hole – Neutron Star Mergers, MNRAS, 508, 4
 
15. Broekgaarden, F.S., Justham, S., de Mink, S.E., Gair, J., Mandel, I., Stevenson, S., Barrett, J.W., Vigna-Gomez, A., Neijssel, C.J., 2019, STROOPWAFEL: simulating rare outcomes from astrophysical populations, with application to gravitational -wave sources, MNRAS, 490, 4
 
– Second or third author publications (5) –
 
14. Mould, M., Gerosa, D., Broekgaarden, F. S., Steinle, N., 2022, Which black hole formed first? Mass-ratio reversal in massive binary stars from gravitational-wave data, MNRAS (in press)
 
13. Wagg, Tom, Broekgaarden, F.S., de Mink, S.E., Frankel, N., van Son, L.A.C., Justham, S., 2022, Gravitational wave sources in our Galactic backyard: Predictions for BHBH, BHNS and NSNS binaries in LISA, A&A (in press)
 
12. Chattopadhyay, D., Stevenson, S., Broekgaarden, F.S., Antonini, F., Belczynski, K., 2022 Modelling the formation of the first two neutron star-black hole mergers, GW200105 and GW200115: metallicity, chirp masses and merger remnant spins, MNRAS, 513, 4
 
11. Lin, L., Bingham, D., Broekgaarden, F.S., Mandel, I., 2021, Uncertainty Quantification of Computer Model for Binary Black Hole Formation, Annals of Applied Statistics, 15(4): 1604-1627
 
10. van Son, L. A. C., de Mink, S.E., Broekgaarden, F.S., Renzo, M., Justham, S., Laplace, E., MorÅLan-Fraile, J., Hendriks, D. D. and Farmer, R., 2020, Polluting the Pair-instability Mass Gap for Binary Black Holes through Super-Eddington Accretion in Isolated Binaries, ApJ, 897, 1
 
– Other co-authored publications (9) –
 
9. Stevenson, S., Willcox, R., Vigna-Gomez, A., Broekgaarden, F.S., 2022, Wide binary pulsars from electron-capture supernovae, MNRAS, 513, 4
 
8. van Son, L.A.C., de Mink, S.E., Callister, T., Justham, S. et al., (incl. Broekgaarden, F.S.), The Redshift Evolution of the Binary Black Hole Merger Rate: A Weighty Matter, ApJ, 931, 1
 
7. Naidu, R.P., Ji, A.P, Conroy, C.C, Bonaca, A. et al. (incl. Broekgaarden, F.S.), Evidence from Disrupted Halo Dwarfs that r–process Enrichment via Neutron Star Mergers is Delayed by ≳ 500 Myrs, ApJL, 926, 2
 
6. van Son, L. A. C., de Mink, S.E., Callister, T., Justham, S., et al. (incl. Broekgaarden, F.S.), 2022, The redshift evolution of the binary black hole merger rate: a weighty matter, ApJ, 931, 1
 
5. Hajela, A., Margutti, R., Bright, J. S., Alexander, K. D. et al. (incl. Broekgaarden, F.S.), 2022, The emergence of a new source of X-rays from the binary neutron star merger GW170817, ApJ, 927, 1 3
 
4. Chattopadhyay, D., Stevenson, S., Hurley, J.R., Bailes, M., Broekgaarden, F.S., 2021, Modelling Neutron Star-Black Hole Binaries: Future Pulsar Surveys and Gravitational Wave Detectors, MNRAS, 504, 3
 
3. Kemp, A.J., Karakas, A.I., Casey, A.R., Izzard, R.G.I., et al. (incl. Broekgaarden, F.S.), 2021, Population synthesis of accreting white dwarfs: Rates and evolutionary pathways of H and He novae, MNRAS, 504, 4
 
2. Vigna-Gomez, A., MacLeod, M, Neijssel, C.J., Broekgaarden, F.S., et al., 2020, Common envelope episodes that lead to double neutron star formation, PASA, 37, e038
 
1. Neijssel, C.J., Vigna-Gomez, A., Stevenson, S., Barrett, J.W., et al., (incl. Broekgaarden, F.S.) 2019, The effect of the metallicity-specific star formation history on double compact object mergers, MNRAS, 490, 3